Loading...

Terminy kursów:

11.12.2023 - 13.12.2023
03.01.2024 - 05.01.2024
05.02.2024 - 07.02.2024
11.03.2024 - 13.03.2024

Oficjalny konspekt Microsoft Pozostałe szkolenia

DP-100 Designing and Implementing a Data Science Solution on Azure

Czas trwania kursu: 3 dni
Cena: 2399 zł netto

CERTYFIKACJE ZAWODOWE

Certyfikacja podstawowa CertyfIkacja specjalistyczna Certyfikacja ekspercka
FUNDAMENTALS ASSOCIATE EXPERT

 


POZIOM SZKOLENIA

podstawowy średniozaawansowany zaawansowany ekspercki
100 200 300 400

 

TEMATYKA ZAJĘĆ

  • Module 1: Getting Started with Azure Machine Learning
    Introduction to Azure Machine Learning
    Working with Azure Machine Learning
    Lab: Create an Azure Machine Learning Workspace

 

  • Module 2: Visual Tools for Machine Learning
    Automated Machine Learning
    Azure Machine Learning Designer
    Lab: Use Automated Machine Learning
    Lab: Use Azure Machine Learning Designer

 

  • Module 3: Running Experiments and Training Models
    Introduction to Experiments
    Training and Registering Models
    Lab: Train Models
    Lab: Run Experiments

 

  • Module 4: Working with Data
    Working with Datastores
    Working with Datasets
    Lab: Work with Data

 

  • Module 5: Working with Compute
    Working with Environments
    Working with Compute Targets
    Lab: Work with Compute 

 

  • Module 6: Orchestrating Operations with Pipelines
    Introduction to Pipelines
    Publishing and Running Pipelines
    Lab:
    Create a Pipeline

 

  • Module 7: Deploying and Consuming Models
    Real-time Inferencing
    Batch Inferencing
    Continuous Integration and Delivery

    Lab: Create a Real-time Inferencing Service
    Lab: Create a Batch Inferencing Service

 

  • Module 8: Training Optimal Models
    Hyperparameter Tuning
    Automated Machine Learning
    Lab: Use Automated Machine Learning from the SDK
    Lab: Tune Hyperparameters

 

  • Module 9: Responsible Machine Learning
    Differential Privacy
    Model Interpretability
    Fairness
    Lab: Explore Differential provacy
    Lab: Interpret Models
    Lab: Detect and Mitigate Unfairness

 

  • Module 10: Monitoring Models
    Monitoring Models with Application Insights
    Monitoring Data Drift
    Lab: Monitor Data Drift
    Lab: Monitor a Model with Application Insights